
Copyright ��2003�Ascential Software Corporation
50 Washington Street, Westboro, MA 01581

All rights reserved.

Technical Bulletin
Part No. 74-0143

DataStage Teradata API

This technical bulletin describes Release 1.2 of the DataStage Teradata
API plug-in stage. This stage includes a GUI to read and write data to and
from any DataStage stage into a Teradata database. It also provides native
data browsing and meta data import from the Teradata database to
DataStage.

© 2000–2003 Ascential Software Corporation. All rights reserved. Ascential, Ascential Software,
DataStage, MetaStage, MetaBroker, and Axielle are trademarks of Ascential Software Corporation or its
affiliates and may be registered in the United States or other jurisdictions. Adobe Acrobat is a trade-
mark of Adobe Systems, Inc. Microsoft, Windows, Windows NT, and Windows Server are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other coun-
tries. Teradata is a registered trademark of NCR International, Inc.UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company, Ltd. Other marks
mentioned are the property of the owners of those marks.

This product may contain or utilize third party components subject to the user documentation previ-
ously provided by Ascential Software Corporation or contained herein.

Printing History
First Edition (74-0143) for Release 1.0, February 2000
Second Edition (74-0143) for Release 1.0 and 1.1, August 2002
Updated for Release 1.0 and 1.1, October 2002
Third Edition (74-0143) for Release 1.1, November 2002
Fourth Edition for Release 1.2, August 2003
Updated for Release 1.2, December 2003

How to Order Technical Documents
To order copies of documents, contact your local Ascential subsidiary or distributor, or call our office at
(508) 366-3888.

Documentation Team: Marie E. Hedin

December 2003 74-0143
Introduction
This technical bulletin describes the following for Release 1.2 of the Teradata API
stage for DataStage Release 7.0.1:

• Functionality
• Installation
• Defining the Teradata connection
• Defining Teradata input data
• Defining Teradata output data
• Mapping data types

Currently, you can only use the DataStage ODBC stage to access Teradata data.
Teradata API enables DataStage to read and write data to and from Teradata
databases using the Teradata CLI native programming interface. The Teradata API
stage offers the following advantages over the DataStage ODBC stage:

• Increased processing speed
• Support for the Teradata client software for Windows NT and UNIX
• Simplified configuration on UNIX platforms
• Advanced support for target table DDL (Create and Drop Table)
• Native meta data import

This plug-in stage uses the Teradata CLI programming API for network-attached
systems to let you connect and process SQL statements in the native Teradata
environment.

In summary, Teradata API lets you do the following for a target Teradata database:

• Read and write data
• Create and drop tables
• Import table and column definitions
• Browse native data with the custom GUI

Each Teradata API stage is a passive stage that can have any number of the
following links:

• Input links. Specify the data you are writing, which is a stream of rows to
be loaded into a Teradata database. You can specify the data on an input
link using an SQL statement generated by DataStage or constructed by the
user.

• Output links. Specify the data you are extracting, which is a stream of rows
to be read from a Teradata database. You can specify the data on an output
link using an SQL SELECT statement generated by DataStage or
constructed by the user.
DataStage Teradata API 1

74-0143 December 2003
• Reference output links. Each link represents rows that are key read from a
Teradata database (using the key columns in a WHERE clause of the
SELECT statement that is constructed by DataStage or specified by the
user).

For more information on using a stage in a DataStage job, see DataStage Server Job
Developer’s Guide.

Functionality
The Teradata API stage has the following functionality:

• Stream input, stream output, and reference output links.

• The ability to import table and column definitions from the target Teradata
database and store them in the DataStage Repository. For more information
about meta data import, see DataStage Server Job Developer’s Guide.

• NLS (National Language Support). For more information, see DataStage
NLS Guide.

• Reject row handling.

• File names to contain your SQL statements.

• Support of MetaStage. For more information, see MetaStage User’s Guide.

• Data browsing, which is the ability to use the custom GUI for the stage to
view sample native table data residing on the target Teradata database.

The following functionality is not supported:

• Bulk loading of Teradata tables. Use the Teradata Load stage for bulk
loading into a Teradata database. For more information, see the technical
bulletin DataStage Teradata Load (74-0144).

• Replacing the ODBC stage. The Teradata API stage does not replace the
ODBC stage. DataStage users who created jobs using the ODBC stage to
access a Teradata database may continue to run these jobs.

• Stored procedures.

• Non-ANSI SQL statements in stage-generated SQL statements.

• Version-specific SQL statements in stage-generated SQL statements.

• Text and byte data types.
2 DataStage Teradata API

December 2003 74-0143
Installing the Plug-In
For instructions and information supporting the installation, see DataStage Plug-In
Installation and Configuration Guide.

Before installing the Plug-in, consult Teradata documentation for any specific
configuration requirements.

Note: Very slow performance can occur as data is written if you run the Teradata
server software on the same NT machine where you run Teradata API or
ODBC (to Teradata).

To improve the performance, use two different machines for the Teradata
client and Teradata server. This balances the load since the DataStage server
represents the Teradata client and the Teradata RDBMS represents the
server.

Defining the Teradata Stage
Using the GUI is easier than using grids to edit the values they contain. When you
use the GUI to edit a Teradata API stage, the Teradata Stage dialog box appears:
DataStage Teradata API 3

74-0143 December 2003
This dialog box has the Stage, Input, and Output pages (depending on whether
there are inputs to and outputs from the stage):

• Stage. This page displays the name of the stage you are editing. The
General page defines the Teradata data source and login information. You
can enter text to describe the purpose of the stage in the Description field.
The properties on this page define the connection to the Teradata data
source. For details, see “Connecting to a Teradata Data Source” on page 5.
The NLS page defines a character set map to use with the stage. This page
appears only if you have installed NLS for DataStage. For details, see
“Defining Character Set Mapping” on page 6.

Note: You cannot change the name of the stage from this dialog box. For
details on changing stage names, see DataStage Server Job Developer’s
Guide.

• Input. This page is displayed only if you have an input link to this stage. It
specifies the SQL table to use and the associated column definitions for
each data input link. It also specifies how data is written and contains the
SQL statement or call syntax used to write data to a Teradata table. It also
specifies how to create the target table if desired and how to drop it if
necessary.

• Output. This page is displayed only if you have an output or reference link
to this stage. It specifies the SQL tables to use and the associated column
definitions for each data output link. It contains the SQL SELECT statement
or call syntax used to read data from one or more Teradata tables or views.

The main phases in defining a Teradata CLI stage from the Teradata Stage dialog
box are as follows:

1. Connect to a Teradata data source (see page 5).

2. Optional. Define a character set map (see page 6).

3. Define the data on the input links (see page 7).

4. Define the data on the output links (see page 15).

5. Click OK to close this dialog box.
4 DataStage Teradata API

December 2003 74-0143
Connecting to a Teradata Data Source
The Teradata API connection parameters are set on the General page of the Stage
page. Enter the appropriate information for the following fields:

• Teradata Director. The Teradata Director Program ID (tdpid) that is associ-
ated with a particular Teradata server. The Teradata server has a unique
tdpid. (See your system administrator for the identifier associated with the
Teradata RDBMS that you plan to use.) If no value is given, the value in the
dbcname field in the clispb.dat file is used.

• User ID. The name to use to connect to the Teradata server. This user must
have sufficient privileges to access the specified database and source and
target tables.

• Password. The password associated with the specified user name. For
security, it displays asterisks instead of the value you enter.

• Account ID. Your individual user account that is associated with User ID.

• Description. Optionally, describe the purpose of the Teradata API stage.
DataStage Teradata API 5

74-0143 December 2003
Defining Character Set Mapping
You can define a character set map for a stage. Do this from the NLS tab that
appears on the Stage page. The NLS page appears only if you have installed NLS.

Enter information for the following button and fields, if appropriate:

• Map name to use with stage. The default character set map is defined for
the project or the job. You can change the map by selecting a map name
from the list.

• Use Job Parameter… . Specifies parameter values for the job. Use the
format #Param#, where Param is the name of the job parameter. The string
#Param# is replaced by the job parameter when the job is run.

• Show all maps. Lists all the maps that are shipped with DataStage.

• Loaded maps only. Lists only the maps that are currently loaded.

For additional information about NLS, see DataStage NLS Guide, or for additional
information about job parameters, see DataStage Server Job Developer’s Guide.
6 DataStage Teradata API

December 2003 74-0143
Defining Teradata Input Data
When you write data to a table in a Teradata database, the Teradata API stage has
an input link. Define the properties of this link and the column definitions of the
data on the Input page in the Teradata Stage dialog box.

About the Input Page
The Input page has an Input name field, the General, Columns, and SQL pages,
and the Table Properties (at the right of the Drop table action list box),
Columns…, and View Data… buttons.

• Input name. The name of the input link. Choose the link you want to edit
from the Input name drop-down list box. This list displays all the input
links to the Teradata API stage.

• Click the Columns… button to display a brief list of the columns desig-
nated on the input link. As you enter detailed meta data in the Columns
page, you can leave this list displayed.
DataStage Teradata API 7

74-0143 December 2003
• Click the View Data… button to start the Data Browser. This lets you look
at the data associated with the input link. For a description of the Data
Browser, see DataStage Server Job Developer’s Guide.

General Page

This page is displayed by default. Enter the appropriate information for the
following fields:

• Table name. This field is editable when the update action is not
User-defined SQL (otherwise, it is read-only). It is the name of the target
table to update. You must specify Table name if you do not specify
User-defined SQL. There is no default. You can also click the … button at
the right of the Table name field to browse the Repository to select the
table.

• Transaction size. The number of rows that the stage processes before
committing a transaction to the database. The default is 100. This field is
ignored for nonlogging databases.

• Update action. Specifies which stage-generated SQL statements are used to
update the target table. Some update actions require key columns to update
or delete rows. The default is insert rows without clearing. Choose one of
the following options:

– Insert rows without clearing. Inserts the new rows in the table.

– Clear the table, then insert rows. Deletes the contents of the table before
inserting the new rows. Transaction logging causes slower performance.

– Delete existing rows only. Deletes existing rows in the target file that
have identical keys in the input rows.

– Replace existing rows completely. Deletes the existing rows, then adds
the new rows to the table.

– Update existing rows only. Updates the existing data rows. Any rows in
the data that do not exist in the table are ignored.

– Update existing or insert new rows. Updates the existing data rows
before inserting new rows. Performance depends on the contents of the
target table and the rows being processed in the job. If most rows exist in
the target table, it is faster to update first.

– Insert new or update existing rows. Inserts the new rows before
updating existing rows. Performance depends on the contents of the
8 DataStage Teradata API

December 2003 74-0143
target table and the rows being processed in the job. If most rows do not
exist in the target table, it is faster to insert first.

– User-defined SQL. Writes the data using a user-defined SQL statement.
When you select this option, it overrides the default SQL statement gener-
ated by the stage. If you choose this option, you enter data on the SQL
page. See “Using User-Defined SQL Statements” on page 14 for details
on how to do this.

• Create table action. Choose one of the following options to create the target
table in the specified database:

– Do not create target table. Specifies that the target table is not created,
and disables the Drop table action field and the Table Properties button
(at the right of the field).

– Generate DDL. Specifies that the stage generates the CREATE TABLE
statement using information obtained from the “Target Table” property,
the column definitions grid, and the advanced table properties (see the
Table Properties button later in this section).

– User-defined DDL. Specifies that you enter the appropriate CREATE
TABLE statement on the SQL page as described on page 11.

• Drop table action. Controls the dropping of the target table before it is
created by the stage. If you choose not to create the target table, this field is
disabled. The list box displays the same items as the Create table action list
box except that they apply to the DROP TABLE statement.

• Table Properties button. Click the button at the right of the Drop table
action list box to display the Create Table Properties dialog box.
DataStage Teradata API 9

74-0143 December 2003
You can then specify the following advanced table properties from this
dialog box:

– Table Duplicates. Controls duplicate row control. Use one of the
following values:

– NONE. Duplicate rows are not allowed in Teradata mode and but are
allowed in ANSI mode. This is the default.

– SET. Duplicate rows are not allowed. This is compatible with Teradata
RDBMS tables from prior releases.

– MULTISET. Duplicate rows are allowed. This is compliant with the
ANSI standard.

– Table Copy. Specifies whether to choose duplicate copy protection for the
table. Use one of the following values:

– NONE. This option is established by a CREATE DATABASE statement
for the database in which the table is to be created. Do not use this clause
in the CREATE TABLE statement.

– FALLBACK. Duplicate copies of rows in the table are created and
stored.

– NOFALLBACK. Duplicate copies of rows in the table are not created
and stored.

– Table Freespace. Sets the percent of free space that remains on a cylinder
during loading or update operations. The default value of 0 means that
this clause is not used in the CREATE TABLE statement. Enter a number
from 0 to 75.

– Table Block Size. Sets the value of the data block size attribute to the unit
specified in bytes. The default value of 0 means this clause is not used in
the CREATE TABLE statement. Enter a number from 6144 to 32256.

• Time data type. If you select REAL (the default value), the Plug-in defines
time columns with a data type of REAL. Time values are encoded as
(hour*10000 + minute*100 + second), where second can include a fractional
value. If you select TIME(n), the Plug-in defines time columns as TIME(n),
where n is the Scale value, in the range 0 through 6, representing the frac-
tional seconds precision. The Length value for the time column must be 8 if
Scale equals 0, or it must be 9+ if Scale is greater than 0.

• Timestamp data type. If you select CHAR(19) (the default value), the Plug-
in defines timestamp columns as CHAR(19). If you select TIMESTAMP(n),
the Plug-in defines timestamp columns as TIMESTAMP(n), where n is the
10 DataStage Teradata API

December 2003 74-0143
Scale value, in the range 0 through 6, representing the fractional seconds
precision. The Length value for the timestamp column must be 19 if Scale
equals 0, or it must be 20+ if Scale is greater than 0.

• Description. Optionally enter text to describe the purpose of the link.

Columns Page

This page contains the column definitions for the data written to the table or file.
The Columns page behaves the same way as the Columns page in the ODBC
stage. For a description of how to enter and edit column definitions, see DataStage
Server Job Developer’s Guide.

SQL Page

This page contains the Generated, User-defined, Before, After, Generated DDL,
and User-defined DDL pages. Use these pages to display the stage-generated SQL
statement and the SQL statement that you can enter.

• Generated. This page displays the SQL statements constructed by
DataStage that are used to write data to Teradata. The statements represent
the uneditable result of the selection made in the Update action field on the
General page. You can use Copy to copy them to the Clipboard for use
elsewhere. This page is displayed by default.

• User-defined. Select User-defined SQL from the Update action field on
the General page to enable this page. The GUI displays the stage-generated
SQL statement on this page as a starting point. However, you can enter any
valid, appropriate SQL statement. The box size changes proportionately
when you resize the main window to display long SQL statements.

• Before. This page contains the SQL statements executed before the stage
processes any job data rows. The Before and After pages look alike. The
SQL statement is entered in a resizable edit box. It includes the Treat errors
as non-fatal check box. If selected (the default), errors caused by Before
SQL are logged as warnings, and processing continues with the next
command batch, if any. Each successful execution is treated as a separate
transaction. If not selected, errors are treated as fatal to the job and result in
a transaction rollback. The transaction is committed only if all statements
successfully execute.

• After. This page contains the SQL statements executed after the stage
processes job data rows. The Before and After pages look alike. The SQL
statement is entered in a resizable edit box. It includes the Treat errors as
non-fatal check box. If selected (the default), errors caused by After SQL
DataStage Teradata API 11

74-0143 December 2003
are logged as warnings, and processing continues with the next command
batch, if any. Each successful execution is treated as a separate transaction.
If not selected, errors are treated as fatal to the job and result in a transac-
tion rollback. The transaction is committed only if all statements
successfully execute.

• Generated DDL. Select Generate DDL or User-defined DDL from the
Create table action field on the General page to enable this page. The
CREATE statement field displays the CREATE TABLE statement that is
generated from the column meta data definitions and the information
provided on the Create Table Properties dialog box. If you select an option
other than Do not drop target table from the Drop table action list, the
DROP statement field displays the generated DROP TABLE statement for
dropping the target table.

• User-defined DDL. Select User-defined DDL from the Create table action
or Drop table action field on the General page to enable this page. The
generated DDL statement is displayed as a starting point to define a
CREATE TABLE and a DROP TABLE statement.

The DROP statement field is disabled if User-defined DDL is not selected
from the Drop table action field. If Do not drop target is selected, the DROP
statement field is empty in the Generated DDL and User-defined DDL
pages.
12 DataStage Teradata API

December 2003 74-0143
Note: Once you modify the user-defined DDL statement from the original
generated DDL statement, changes made to other table-related prop-
erties do not affect the user-defined DDL statement. If, for example,
you add a new column in the column grid after modifying the user-
defined DDL statement, the new column appears in the generated
DDL statement but does not appear in the user-defined DDL
statement.

Writing Data to Teradata
The following sections describe the differences when you use stage-generated or
user-defined SQL INSERT, DELETE, or UPDATE statements to write data from
DataStage to a Teradata database.

Using Generated SQL Statements

By default, DataStage writes data to a Teradata table using an SQL INSERT,
DELETE, or UPDATE statement that it constructs. The generated SQL statement is
automatically constructed using the DataStage table and column definitions that
you specify in the input properties for this stage. The Generated page on the SQL
page displays the SQL statement used to write the data.

To use a generated statement:

1. Enter a table name in the Table name field on the General page of the Input
page.

2. Specify how you want the data to be written by choosing an option from
the Update action drop-down list box. See “General Page” on page 7 for a
description of the update actions.

3. Optional. Enter a description of the input link in the Description field.

4. Click the Columns tab on the Input page. The Columns page appears.

5. Edit the Columns grid to specify column definitions for the columns you
want to write.

The SQL statement is automatically constructed using your chosen update
action and the columns you have specified. You can now optionally view this
SQL statement.

6. Click the SQL tab on the Input page, then the Generated tab to view this
SQL statement. You cannot edit the statement here, but you can always
DataStage Teradata API 13

74-0143 December 2003
access this tab to select and copy parts of the generated statement to paste
into the user-defined SQL statement.

7. Click OK to close this dialog box. Changes are saved when you save your
job design.

Using User-Defined SQL Statements

Instead of writing data using an SQL statement constructed by DataStage, you can
enter your own SQL INSERT, DELETE, or UPDATE statement for each Teradata
input link. Ensure that the SQL statement contains the table name, the type of
update action you want to perform, and the columns you want to write.

To use your own SQL statement:

1. Choose User-defined SQL from the Update action drop-down list box on the
General page of the Input page.

2. Click the SQL tab, then the User-defined tab. The User-defined page
appears.

By default you see the stage-generated SQL statement. You can edit this state-
ment or enter your own SQL statement to write data to the target Teradata
tables. This statement must contain the table name, the type of update action
you want to perform, and the columns you want to write.

If the property value begins with {FILE}, the remaining text is interpreted as a
pathname, and the contents of the file supplies the property value.

When writing data, the INSERT statements must contain a VALUES clause
with a parameter marker (?) for each stage input column. UPDATE state-
ments must contain a SET clause with parameter markers for each stage input
column. UPDATE and DELETE statements must contain a WHERE clause
with parameter markers for the primary key columns. If you specify multiple
SQL statements, each is executed as a separate transaction. Terminate indi-
vidual SQL statements with a semicolon (;). Use a double semicolon (;;) to
indicate the end of the command batch. You cannot combine multiple INSERT,
UPDATE, and DELETE statements in one batch. You must execute each state-
ment in a separate command batch.

The parameter markers must be in the same order as the associated columns
listed in the stage properties. For example:

INSERT emp (emp_no, emp_name) VALUES (?, ?)

The size of this box changes proportionately when the main window is resized
to conveniently display very long and/or complex SQL statements.
14 DataStage Teradata API

December 2003 74-0143
Unless you specify a user-defined SQL statement, the stage automatically
generates an SQL statement.

3. Click OK to close this dialog box. Changes are saved when you save your job
design.

Defining Teradata Output Data
When you read data from a Teradata data source, the Teradata API stage has an
output link. The properties of this link and the column definitions of the data are
defined on the Output page in the Teradata Stage dialog box.

About the Output Page
The Output page has an Output name field, the General, Columns, Selection, and
SQL pages, and the Columns… and View Data… buttons. The pages displayed
depend on how you specify the SQL statement to output the data.

• Output name. The name of the output link. Choose the link you want to
edit from the Output name drop-down list box. This list displays all the
output links.

• Click the Columns… button to display a brief list of the columns desig-
nated on the output link. As you enter detailed meta data in the Columns
page, you can leave this list displayed.
DataStage Teradata API 15

74-0143 December 2003
• Click the View Data… button to start the Data Browser. This lets you look
at the data associated with the output link. For a description of the Data
Browser, see DataStage Server Job Developer’s Guide.

General Page

This page is displayed by default. It provides the interface for entering table
names, the number of prefetch rows, and the type of query. Enter the appropriate
information for the following fields:

• Table names. This field appears only when you select Generated SQL
query. It contains the names of the Teradata source tables or files being
accessed. These tables must exist or be created and populated by Before
SQL statements.

Separate multiple table names by a comma (,). You must have select privi-
leges on each table. There is no default. If you specify User-defined SQL
query, Table names is ignored. You must specify a table name in Table
names if you do not define User-defined SQL query.

Additionally, you can use a job parameter to specify the table name. For
details on how to use define and use job parameters, see DataStage Server Job
Developer’s Guide.

You can also click the … button at the right of the Table names field to
browse the Repository to select the table.

• Prefetch rows. The number of rows that Teradata returns when DataStage
fetches data from the source tables. Specifying a value greater than 1
improves performance (memory usage increases to accommodate buff-
ering multiple rows).

• Query type. Displays the Generated SQL query and User-defined SQL
query options. Choose one of the following options:

– Generated SQL query. This is the default setting, which specifies that the
data is extracted using an SQL statement constructed by DataStage. When
this option is selected, the Generated page appears. You cannot edit this
statement.

– User-defined SQL query. Specifies that the data is extracted using a user-
defined SQL query. When this option is selected, the User-defined page
appears allowing you to edit SQL statements.

• Time data type. If you select REAL (the default value), the Plug-in expects
time columns to be defined with a data type of REAL. If you select
TIME(n), the Plug-in expects time columns to be defined as TIME(n),
16 DataStage Teradata API

December 2003 74-0143
where n is the Scale value, in the range 0 through 6, representing the frac-
tional seconds precision. The Length value for the time column must be 8 if
Scale equals 0, or it must be 9 + Scale.

• Timestamp data type. If you select CHAR(19) (the default value), the Plug-
in expects timestamp columns to be defined as CHAR(19). If you select
TIMESTAMP(n), the Plug-in expects timestamp columns to be defined as
TIMESTAMP(n), where n is the Scale value, in the range 0 through 6, repre-
senting the fractional seconds precision. The Length value for the
timestamp column must be 19 if Scale equals 0, or it must be 20 + Scale.

• Isolation Level. Sets the isolation level. The values are:

– None. Uses the default isolation level for the database. See Teradata
documentation.

– Read Uncommitted. Allows the reading of changes before they are
committed (dirty reads). When a job updates a table (inserts, updates or
deletes rows), those changes are not final until the job commits the trans-
action. If the job aborts and rolls back the transaction, then those changes
are backed out, and the table is restored to the state it was in when the
transaction was initiated. Selecting Read Uncommitted allows the stage
to read uncommitted changes while another transaction is updating the
table.

– Read Committed. Prevents the reading of changes before they are
committed but allows other transactions to modify rows that have been
read. Normally when a job performs a lookup in a table, the rows that are
read are locked until the end of the job; thus if the job rereads the same
row it will get the same result (see “Repeatable Read” below). Selecting
Read Committed causes the stage immediately to release the lock on a
row that has been read so that other transactions can later update the row
while the lookup is still in progress.

– Repeatable Read. Prevents any transactions from modifying any data
that has been read but allows the reading of phantom rows. Selecting
Repeatable Read causes the stage to hold a read lock on any row that is
read until the end of the job. This guarantees that rows that are reread
during the execution of the job will return the same result. Other transac-
tions cannot update or delete rows that have been read, but they can
insert new rows that the lookup can then subsequently read. These are
known as phantom rows.

– Serializable. Prevents any transactions from modifying any data that has
been read and prevents the reading of phantom rows. Selecting
DataStage Teradata API 17

74-0143 December 2003
Serializable causes the stage to use a table-level read lock until the end of
the job. Thus, transactions cannot insert, update or delete rows while the
table is being read. Reads are repeatable, and it is not possible to read
phantom rows. Other transactions cannot update any rows in the table
while the lookup is in progress.

• Use column derivation fields. If not selected (the default), the Derivation
field on the Columns tab is ignored. If selected, any SQL expressions in the
Derivation field on the Columns tab appear in the select list of the gener-
ated SQL SELECT statement. If an expression is not specified in the
Derivation field, the column name appears in the select list of the generated
SQL SELECT statement.

• Description. Optionally enter text to describe the purpose of the link.

Columns Page

This page contains the column definitions for the data being output on the chosen
link. For a description of how to enter and edit column definitions, see DataStage
Server Job Developer’s Guide.

The column definitions for reference links require a key field. Key fields join
reference inputs to a Transformer stage. Teradata API key reads the data by using
a WHERE clause in the SQL SELECT statement.

Selection Page

This page is used primarily with generated SQL queries. It contains optional SQL
SELECT clauses for the conditional extraction of data. These clauses are appended
to the generated SQL statements.

SQL Page

This page displays the stage-generated or user-defined SQL statements used to
read data from Teradata. It contains the Generated, User-defined, Before, and
After pages. These pages are identical to those under the SQL page for the Input
page except there are no Generated DDL and User-defined DDL pages.

• Generated. This page is displayed by default. It contains the SQL state-
ments constructed by DataStage as a result of the Update action from the
General page of the Output page. You cannot edit these statements, but
you can use Copy to copy them to the Clipboard for use elsewhere.

• User-defined. This page contains the SQL statements executed to read data
from Teradata. This page is enabled when you select User-defined SQL
query from the Query type field on the General page. The GUI displays
18 DataStage Teradata API

December 2003 74-0143
the stage-generated SQL statement on this page as a starting point.
However, you can enter any valid, appropriate SQL statement. The box size
changes proportionately when you resize the main window to display long
SQL statements.

• Before. This page contains the SQL statements executed before the stage
processes any job data rows. It includes the Treat errors as non-fatal check
box. If selected (the default), errors caused by Before SQL are logged as
warnings, and processing continues with the next command batch, if any.
Each successful execution is treated as a separate transaction. If not
selected, errors are treated as fatal to the job and result in a transaction roll-
back. The transaction is committed only if all statements successfully
execute.

• After. This page contains the SQL statements executed after the stage
processes all job data rows. It includes the Treat errors as non-fatal check
box. If selected (the default), errors caused by After SQL are logged as
warnings, and processing continues with the next command batch, if any.
Each successful execution is treated as a separate transaction. If not
selected, errors are treated as fatal to the job and result in a transaction roll-
back. The transaction is committed only if all statements successfully
execute.

Reading Data from Teradata
The following sections describe the differences when you use generated queries or
user-defined queries to read data from a Teradata database into DataStage.

Using Generated Queries

By default, DataStage extracts data from a Teradata data source using an SQL
SELECT statement that it constructs. The SQL statement is automatically
constructed using the table and column definitions that you entered in the stage
output properties.
DataStage Teradata API 19

74-0143 December 2003
When you select Generated SQL query, data is extracted from a Teradata database
using an SQL SELECT statement constructed by DataStage. SQL SELECT
statements have the following syntax:

SELECT clause FROM clause
�WHERE clause�

�GROUP BY clause�

�HAVING clause�

�ORDER BY clause�;

When you specify the tables to use and the columns to be output from the Teradata
API stage, the SQL SELECT statement is automatically constructed and can be
viewed by clicking the SQL tab on the Output page.

For example, if you extract the Name, Address, and Phone columns from a table
called Table1, the SQL statement displayed on the SQL page is:

SELECT Name, Address, Phone FROM Table1;

The SELECT and FROM clauses are the minimum required and are automatically
generated by DataStage. However, you can use any of these SQL SELECT clauses:

For more information about these clauses, see DataStage Server Job Developer’s
Guide.

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be selected.

GROUP BY clause Groups rows to summarize results.

HAVING clause Specifies the criteria that grouped rows must meet to be
selected.

ORDER BY clause Sorts selected rows.
20 DataStage Teradata API

December 2003 74-0143
Using Additional SQL Select Clauses. If you want to use the additional SQL
SELECT clauses, you must enter them on the Selection page of the Output page.
These clauses are appended to the SQL statement that is generated by the stage. If
this link is a reference link, only the WHERE clause is enabled.

The Selection page is divided into two areas (panes). You can resize an area by
dragging the split bar for displaying long SQL clauses.

• WHERE clause. This text box allows you to insert an SQL WHERE clause
to specify criteria that the data must meet before being selected.

• Other clauses. This text box allows you to insert a GROUP BY, HAVING, or
ORDER BY clause.

For more information about these clauses, see DataStage Server Job Developer’s
Guide.
DataStage Teradata API 21

74-0143 December 2003
Using User-Defined Queries

Instead of using the SQL statement constructed by DataStage, you can enter your
own SQL statement for each Teradata output link.

1. Select User-defined SQL query from the Query type drop-down list box on
the General page of the Output page. The User-defined page on the SQL
page is enabled. It looks like the User-defined page for the input link.

2. You can edit the statements or drag and drop the selected columns into
your user-defined SQL statement. You must ensure that the table defini-
tions for the output link are correct and represent the columns that are
expected.

If your entry begins with {FILE}, the remaining text is interpreted as a path-
name, and the contents of the file supplies the text for the query.

3. Click OK to close this dialog box. Changes are saved when you save your job
design.

Mapping Data Types
You can map DataStage data types to Teradata data types. When “Create Table” is
set to Yes for input links, the target table is created using the input link column
definitions and the input link properties that define the properties for the target
table.
22 DataStage Teradata API

	DataStage Teradata API
	Introduction
	Functionality
	Installing the Plug-In
	Defining the Teradata Stage
	Connecting to a Teradata Data Source
	Defining Character Set Mapping
	Defining Teradata Input Data
	About the Input Page
	General Page
	Columns Page
	SQL Page

	Writing Data to Teradata
	Using Generated SQL Statements
	Using User-Defined SQL Statements

	Defining Teradata Output Data
	About the Output Page
	General Page
	Columns Page
	Selection Page
	SQL Page

	Reading Data from Teradata
	Using Generated Queries
	Using User-Defined Queries

	Mapping Data Types

